Tuning Parameters for SARIMA Models

non_seasonal_ar(range = c(0L, 5L), trans = NULL)

non_seasonal_differences(range = c(0L, 2L), trans = NULL)

non_seasonal_ma(range = c(0L, 5L), trans = NULL)

seasonal_ar(range = c(0L, 2L), trans = NULL)

seasonal_differences(range = c(0L, 1L), trans = NULL)

seasonal_ma(range = c(0L, 2L), trans = NULL)

markov_chains(range = c(0L, 8L), trans = NULL)

adapt_delta(range = c(0, 1), trans = NULL)

tree_depth(range = c(0L, 100L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively.

trans

A trans object from the scales package, such as scales::log10_trans() or scales::reciprocal_trans(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Value

A parameter

A parameter

A parameter

A parameter

A parameter

A parameter

A parameter

A parameter

A parameter

Details

The main parameters for SARIMA models are:

  • non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.

  • non_seasonal_differences: The order of integration for non-seasonal differencing.

  • non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.

  • seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.

  • seasonal_differences: The order of integration for seasonal differencing.

  • seasonal_ma: The order of the seasonal moving average (SMA) terms.

  • markov_chains: The number of markov chains.

  • adapt_delta: The thin of the jumps in a HMC method

  • tree_depth: Maximum depth of the trees

Examples

non_seasonal_ar()
#> Non-seasonal AR Term (quantitative) #> Range: [0, 5]
non_seasonal_differences()
#> Non-seasonal Differencing Term (quantitative) #> Range: [0, 2]
non_seasonal_ma()
#> Non-seasonal MA Term (quantitative) #> Range: [0, 5]